Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda
نویسندگان
چکیده
Landslides susceptibility assessment has to be conducted to identify prone areas and guide risk management. Landslides in Rwanda are very deadly disasters. The current research aimed to conduct landslide susceptibility assessment by applying Spatial Multi-Criteria Evaluation Model with eight layers of causal factors including: slope, distance to roads, lithology, precipitation, soil texture, soil depth, altitude and land cover. In total, 980 past landslide locations were mapped. The relationship between landslide factors and inventory map was calculated using the Spatial Multi-Criteria Evaluation. The results revealed that susceptibility is spatially distributed countrywide with 42.3% of the region classified from moderate to very high susceptibility, and this is inhabited by 49.3% of the total population. In addition, Provinces with high to very high susceptibility are West, North and South (40.4%, 22.8% and 21.5%, respectively). Subsequently, the Eastern Province becomes the peak under low susceptibility category (87.8%) with no very high susceptibility (0%). Based on these findings, the employed model produced accurate and reliable outcome in terms of susceptibility, since 49.5% of past landslides fell within the very high susceptibility category, which confirms the model's performance. The outcomes of this study will be useful for future initiatives related to landslide risk reduction and management.
منابع مشابه
GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (north of Tehran, Iran)
The aim of this study is to produce landslide susceptibility mapping by probabilistic likelihood ratio (PLR) and spatial multi-criteria evaluation (SMCE) models based on geographic information system (GIS) in the north of Tehran metropolitan, Iran. The landslide locations in the study area were identified by interpretation of aerial photographs, satellite images, and field surveys. In order to ...
متن کاملA GIS Based Landslide Susceptibility Mapping Using Multi-Criteria Decision Analysis Model at a Regional Scale
The paper aims to produce a landslide susceptibility map by means of multi-criteria decision analysis based on GIS for Qianyang County, Shaanxi Province, China. At first, a detailed landslide inventory map was prepared and fourteen landside conditioning factors were considered: slope aspect, slope angle, altitude, plan curvature, profile curvature, geomorphology, rainfall, STI, TWI, SPI, distan...
متن کاملA GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping
Landslide susceptibility mapping (LSM) is making increasing use of GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. We have developed a new multi-criteria decision analysis (MCDA) method for LSM and applied it to the Izeh River basin in south-western Iran. Our method is based on fuzzy membership functions (FMFs) derived from GIS analysis. It makes use of n...
متن کاملLandslides susceptibility mapping using fuzzy logic and AHP
Landslide, due to its dangerous nature in mountainous areas, usually causes morphology to suddenly collapse and causes major damage to residential areas, roads, agricultural lands, and so on. In this study, using the AHP model and fuzzy logic operators, we evaluated and zoned the landslide sensitivity in the Pseudogene basin in Razavi Khorasan province. The eight main criteria of elevation, slo...
متن کاملAn optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter
The Kalman recursive algorithm has been very widely used for integrating navigation sensor data to achieve optimal system performances. This paper explores the use of the Kalman filter to extend the aggregation of spatial multi-criteria evaluation (MCE) and to find optimal solutions with respect to a decision strategy space where a possible decision rule falls. The approach was tested in a case...
متن کامل